Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.206
Filter
1.
J Am Chem Soc ; 146(15): 10537-10549, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38567991

ABSTRACT

The aberrant aggregation of α-synuclein (αS) into amyloid fibrils is associated with a range of highly debilitating neurodegenerative conditions, including Parkinson's disease. Although the structural properties of mature amyloids of αS are currently understood, the nature of transient protofilaments and fibrils that appear during αS aggregation remains elusive. Using solid-state nuclear magnetic resonance (ssNMR), cryogenic electron microscopy (cryo-EM), and biophysical methods, we here characterized intermediate amyloid fibrils of αS forming during the aggregation from liquid-like spherical condensates to mature amyloids adopting the structure of pathologically observed aggregates. These transient amyloid intermediates, which induce significant levels of cytotoxicity when incubated with neuronal cells, were found to be stabilized by a small core in an antiparallel ß-sheet conformation, with a disordered N-terminal region of the protein remaining available to mediate membrane binding. In contrast, mature amyloids that subsequently appear during the aggregation showed different structural and biological properties, including low levels of cytotoxicity, a rearranged structured core embedding also the N-terminal region, and a reduced propensity to interact with the membrane. The characterization of these two fibrillar forms of αS, and the use of antibodies and designed mutants, enabled us to clarify the role of critical structural elements endowing intermediate amyloid species with the ability to interact with membranes and induce cytotoxicity.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Humans , alpha-Synuclein/genetics , alpha-Synuclein/toxicity , alpha-Synuclein/chemistry , Parkinson Disease/metabolism , Amyloid/chemistry , Protein Conformation, beta-Strand
2.
ACS Appl Mater Interfaces ; 16(15): 18268-18284, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38564419

ABSTRACT

The essential amino acid histidine plays a central role in the manifestation of several metabolic processes, including protein synthesis, enzyme-catalysis, and key biomolecular interactions. However, excess accumulation of histidine causes histidinemia, which shows brain-related medical complications, and the molecular mechanism of such histidine-linked complications is largely unknown. Here, we show that histidine undergoes a self-assembly process, leading to the formation of amyloid-like cytotoxic and catalytically active nanofibers. The kinetics of histidine self-assembly was favored in the presence of Mg(II) and Co(II) ions. Molecular dynamics data showed that preferential noncovalent interactions dominated by H-bonds between histidine molecules facilitate the formation of histidine nanofibers. The histidine nanofibers induced amyloid cross-seeding reactions in several proteins and peptides including pathogenic Aß1-42 and brain extract components. Further, the histidine nanofibers exhibited oxidase activity and enhanced the oxidation of neurotransmitters. Cell-based studies confirmed the cellular internalization of histidine nanofibers in SH-SY5Y cells and subsequent cytotoxic effects through necrosis and apoptosis-mediated cell death. Since several complications including behavioral abnormality, developmental delay, and neurological disabilities are directly linked to abnormal accumulation of histidine, our findings provide a foundational understanding of the mechanism of histidine-related complications. Further, the ability of histidine nanofibers to catalyze amyloid seeding and oxidation reactions is equally important for both biological and materials science research.


Subject(s)
Nanofibers , Nanostructures , Neuroblastoma , Humans , Histidine , Peptides/chemistry , Nanofibers/chemistry , Amyloid/chemistry , Amyloid beta-Peptides/chemistry
3.
Phys Chem Chem Phys ; 26(15): 11880-11892, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38568008

ABSTRACT

Recent experiments have revealed that adenosine triphosphate (ATP) suppresses the fibrillation of amyloid peptides - a process closely linked to neurodegenerative diseases such as Alzheimer's and Parkinson's. Apart from the adsorption of ATP onto amyloid peptides, the molecular understanding is still limited, leaving the underlying mechanism for the fibrillation suppression by ATP largely unclear, especially in regards to the molecular energetics. Here we provide an explanation at the molecular scale by quantifying the free energies using all-atom molecular dynamics simulations. We found that the changes of the free energies due to the addition of ATP lead to a significant equilibrium shift towards monomeric peptides in agreement with experiments. Despite ATP being a highly charged species, the decomposition of the free energies reveals that the van der Waals interactions with the peptide are decisive in determining the relative stabilization of the monomeric state. While the phosphate moiety exhibits strong electrostatic interactions, the compensation by the water solvent results in a minor, overall Coulomb contribution. Our quantitative analysis of the free energies identifies which intermolecular interactions are responsible for the suppression of the amyloid fibril formation by ATP and offers a promising method to analyze the roles of similarly complex cosolvents in aggregation processes.


Subject(s)
Amyloid , Peptides , Amyloid/chemistry , Peptides/chemistry , Water/chemistry , Entropy , Solvents/chemistry , Molecular Dynamics Simulation , Amyloidogenic Proteins , Amyloid beta-Peptides/chemistry , Peptide Fragments/chemistry
4.
Biochem Soc Trans ; 52(2): 719-731, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38563485

ABSTRACT

The aggregation of proteins into amyloid-like fibrils is seen in many neurodegenerative diseases. Recent years have seen much progress in our understanding of these misfolded protein inclusions, thanks to advances in techniques such as solid-state nuclear magnetic resonance (ssNMR) spectroscopy and cryogenic electron microscopy (cryo-EM). However, multiple repeat-expansion-related disorders have presented special challenges to structural elucidation. This review discusses the special role of ssNMR analysis in the study of protein aggregates associated with CAG repeat expansion disorders. In these diseases, the misfolding and aggregation affect mutant proteins with expanded polyglutamine segments. The most common disorder, Huntington's disease (HD), is connected to the mutation of the huntingtin protein. Since the discovery of the genetic causes for HD in the 1990s, steady progress in our understanding of the role of protein aggregation has depended on the integrative and interdisciplinary use of multiple types of structural techniques. The heterogeneous and dynamic features of polyQ protein fibrils, and in particular those formed by huntingtin N-terminal fragments, have made these aggregates into challenging targets for structural analysis. ssNMR has offered unique insights into many aspects of these amyloid-like aggregates. These include the atomic-level structure of the polyglutamine core, but also measurements of dynamics and solvent accessibility of the non-core flanking domains of these fibrils' fuzzy coats. The obtained structural insights shed new light on pathogenic mechanisms behind this and other protein misfolding diseases.


Subject(s)
Peptides , Peptides/chemistry , Peptides/metabolism , Humans , Amyloid/chemistry , Amyloid/metabolism , Protein Aggregates , Huntington Disease/metabolism , Huntington Disease/genetics , Huntingtin Protein/chemistry , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Protein Folding , Magnetic Resonance Spectroscopy/methods , Nuclear Magnetic Resonance, Biomolecular/methods
5.
Nanoscale ; 16(16): 8074-8089, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38563405

ABSTRACT

Amyloid aggregation is implicated in the pathogenesis of various neurodegenerative disorders, such as Alzheimer's disease (AD) and Parkinson's disease (PD). It is critical to develop high-performance drugs to combat amyloid-related diseases. Most identified nanomaterials exhibit limited biocompatibility and therapeutic efficacy. In this work, we used a solvent-free carbonization process to prepare new photo-responsive carbon nanodots (CNDs). The surface of the CNDs is densely packed with chemical groups. CNDs with large, conjugated domains can interact with proteins through π-π stacking and hydrophobic interactions. Furthermore, CNDs possess the ability to generate singlet oxygen species (1O2) and can be used to oxidize amyloid. The hydrophobic interaction and photo-oxidation can both influence amyloid aggregation and disaggregation. Thioflavin T (ThT) fluorescence analysis and circular dichroism (CD) spectroscopy indicate that CNDs can block the transition of amyloid from an α-helix structure to a ß-sheet structure. CNDs demonstrate efficacy in alleviating cytotoxicity induced by Aß42 and exhibit promising blood-brain barrier (BBB) permeability. CNDs have small size, low biotoxicity, good fluorescence and photocatalytic properties, and provide new ideas for the diagnosis and treatment of amyloid-related diseases.


Subject(s)
Amyloid beta-Peptides , Carbon , Carbon/chemistry , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/chemistry , Humans , Catalysis , Singlet Oxygen/metabolism , Singlet Oxygen/chemistry , Blood-Brain Barrier/metabolism , Animals , Protein Aggregates/drug effects , Quantum Dots/chemistry , Amyloid/chemistry , Amyloid/metabolism , Cell Survival/drug effects , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Hydrophobic and Hydrophilic Interactions
6.
Biochem Soc Trans ; 52(2): 761-771, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38600027

ABSTRACT

Recent developments in atomic force microscopy (AFM) image analysis have made three-dimensional (3D) structural reconstruction of individual particles observed on 2D AFM height images a reality. Here, we review the emerging contact point reconstruction AFM (CPR-AFM) methodology and its application in 3D reconstruction of individual helical amyloid filaments in the context of the challenges presented by the structural analysis of highly polymorphous and heterogeneous amyloid protein structures. How individual particle-level structural analysis can contribute to resolving the amyloid polymorph structure-function relationships, the environmental triggers leading to protein misfolding and aggregation into amyloid species, the influences by the conditions or minor fluctuations in the initial monomeric protein structure on the speed of amyloid fibril formation, and the extent of the different types of amyloid species that can be formed, are discussed. Future perspectives in the capabilities of AFM-based 3D structural reconstruction methodology exploiting synergies with other recent AFM technology advances are also discussed to highlight the potential of AFM as an emergent general, accessible and multimodal structural biology tool for the analysis of individual biomolecules.


Subject(s)
Amyloid , Imaging, Three-Dimensional , Microscopy, Atomic Force , Microscopy, Atomic Force/methods , Imaging, Three-Dimensional/methods , Humans , Amyloid/chemistry , Amyloid/metabolism , Amyloidogenic Proteins/chemistry , Amyloidogenic Proteins/metabolism , Protein Conformation , Protein Folding
7.
Brain Nerve ; 76(4): 391-397, 2024 Apr.
Article in Japanese | MEDLINE | ID: mdl-38589283

ABSTRACT

Amyloid fibril formation is a general property of proteins and peptides. It is a physicochemical phenomenon similar to crystallization, in which amyloid precursor proteins exceeding solubility precipitate through the breakdown of supersaturation. Using the ultrasonication-forced amyloid fibril inducer HANABI, we have discovered that serum albumin acts as an inhibitor in dialysis-related amyloidosis. Exploring the factors that induce or inhibit amyloid fibril formation using HANABI can lead to the development of early diagnosis and prevention methods for amyloidosis.


Subject(s)
Amyloid , Amyloidosis , Humans , Amyloid/chemistry , Amyloid/metabolism , Biological Factors , Amyloidosis/etiology , Amyloidosis/metabolism , Peptides/metabolism
8.
Carbohydr Polym ; 332: 121919, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38431397

ABSTRACT

The differences in the gelling properties of soy protein isolate (SPI) and soy protein isolate amyloid fibrils (SAFs) as well as the role of cellulose nanocrystals (CNC) in regulating their gel behaviors were investigated in this study. The binding of CNC to ß-conglycinin (7S), glycinin (11S), and SAFs was predominantly driven by non-covalent interactions. CNC addition reduced the particle size, turbidity, subunit segments, and crystallinity of SPI and SAFs, promoted the conversion of α-helix to ß-sheet, improved the thermal stability, exposed more tyrosine and tryptophan residues, and enhanced the intermolecular interactions. A more regular and ordered lamellar network structure was formed in the SAFs-CNC composite gel, which could be conducive to the improvement of gel quality. This study would provide theoretical reference for the understanding of the regulatory mechanism of protein amyloid fibrils gelation as well as the high-value utilization of SAFs-CNC complex as a functional protein-based material or food ingredient in food field.


Subject(s)
Cellulose , Nanoparticles , Cellulose/chemistry , Soybean Proteins/chemistry , Amyloid/chemistry , Particle Size
9.
Int J Biol Macromol ; 264(Pt 2): 130699, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460650

ABSTRACT

The formation of amyloid fibrils is associated with many severe pathologies as well as the execution of essential physiological functions by proteins. Despite the diversity, all amyloids share a similar morphology and consist of stacked ß-strands, suggesting high amyloidogenicity of native proteins enriched with ß-structure. Such proteins include those with a ß-barrel-like structure with ß-strands arranged into a cylindrical ß-sheet. However, the mechanisms responsible for destabilization of the native state and triggering fibrillogenesis have not thoroughly explored yet. Here we analyze the structural determinants of fibrillogenesis in proteins with ß-barrel structures on the example of odorant-binding protein (OBP), whose amyloidogenicity was recently demonstrated in vitro. We reveal a crucial role in the fibrillogenesis of OBPs for the "open" conformation of the molecule. This conformation is achieved by disrupting the interaction between the ß-barrel and the C-terminus of protein monomers or dimers, which exposes "sticky" amyloidogenic sites for interaction. The data suggest that the "open" conformation of OBPs can be induced by destabilizing the native ß-barrel structure through the disruption of: 1) intramolecular disulfide cross-linking and non-covalent contacts between the C-terminal fragment and ß-barrel in the protein's monomeric form, or 2) intermolecular contacts involved in domain swapping in the protein's dimeric form.


Subject(s)
Amyloid , Receptors, Odorant , Amyloid/chemistry , Odorants , Amyloid beta-Peptides/metabolism
10.
Phys Chem Chem Phys ; 26(14): 10998-11013, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38526443

ABSTRACT

The presence of amyloid fibrils is a hallmark of several neurodegenerative diseases. Some amyloidogenic proteins, such as α-synuclein and amyloid ß, interact with lipids, and this interaction can strongly favour the formation of amyloid fibrils. In particular the primary nucleation step, i.e. the de novo formation of amyloid fibrils, has been shown to be accelerated by lipids. However, the exact mechanism of this acceleration is still mostly unclear. Here we use a range of scattering methods, such as dynamic light scattering (DLS) and small angle X-ray and neutron scattering (SAXS and SANS) to obtain structural information on the binding of α-synuclein to model membranes formed from negatively charged lipids and their co-assembly into amyloid fibrils. We find that the model membranes take an active role in the reaction. The binding of α synuclein to the model membranes immediately induces a major structural change in the lipid assembly, which leads to a break-up into small and mostly disc- or rod-like lipid-protein particles. This transition can be reversed by temperature changes or proteolytic protein removal. Incubation of the small lipid-α-synuclein particles for several hours, however, leads to amyloid fibril formation, whereby the lipids are incorporated into the amyloid fibrils.


Subject(s)
Amyloid beta-Peptides , alpha-Synuclein , alpha-Synuclein/chemistry , Scattering, Small Angle , X-Ray Diffraction , Amyloid/chemistry , Lipids
11.
Int J Biol Macromol ; 264(Pt 1): 130632, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447831

ABSTRACT

Plasmalogens comprise a large fraction of the total phospholipids in plasma membranes. These molecules modulate membrane fluidity, produce inflammatory mediators mitigating effects of metabolic stresses. A growing body of evidence suggests that an onset of Parkinson's disease (PD), a severe neurodegenerative pathology, can be triggered by metabolic changes in plasma membranes. However, the role of plasmalogens in the aggregation of α-synuclein (α-syn), an expected molecular cause of PD, remains unclear. In this study we examine the effect of choline plasmalogens (CPs), unique phospholipids that have a vinyl ether linkage at the sn-1 position of glycerol, on the aggregation rate of α-syn. We found that the length and saturation of fatty acids (FAs) in CPs change rates of protein aggregation. We also found drastic changes in the morphology of α-syn fibrils formed in the presence of different CPs compared to α-syn fibrils grown in the lipid-free environment. At the same time, we did not observe substantial changes in the secondary structure and toxicity of α-syn fibrils formed in the presence of different CPs. These results indicate that the length and saturation of FAs in CPs present in the plasma membrane can alter α-syn stability and modulate its aggregation properties, which, in turn can accelerate or delay the onset of PD.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/chemistry , Plasmalogens , Amyloid/chemistry , Parkinson Disease/metabolism
12.
Biomolecules ; 14(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38540718

ABSTRACT

The amyloidogenic Aß peptides are widely considered as a pathogenic agent in Alzheimer's disease. Aß(1-42) would form aggregates of amyloid fibrils on the neuron plasma membranes, thus perturbing neuronal functionality. Conflicting data are available on the influence of bilayer order on Aß(1-42) binding to membranes. In the present study, a biophysical approach was used in which isothermal calorimetry and surface pressure measurements were applied to explore the interaction of Aß(1-42) in either monomeric, oligomeric, or fibrillar form with model membranes (bilayers or monolayers) in the liquid-ordered state that were either electrically neutral or negatively charged. In the latter case, this contained phosphatidic acid, cardiolipin, or ganglioside. The calorimetric studies showed that Aß(1-42) fibrils, oligomers, and monomers could bind and/or be inserted into bilayers, irrespective of electric charge, in the liquid-ordered state, except that monomers could not interact with electrically neutral bilayers. The monolayer studies in the Langmuir balance demonstrated that Aß(1-42) aggregation hindered peptide insertion into the monolayer, hindered insertion in the decreasing order of monomer > oligomer > fibril, and that lipid composition did not cause large differences in insertion, apart from a slight facilitation of monomer and oligomer insertion by gangliosides.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Amyloid beta-Peptides/metabolism , Amyloid/chemistry , Peptide Fragments/metabolism , Alzheimer Disease/metabolism , Gangliosides
13.
Molecules ; 29(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38542833

ABSTRACT

A group of functionalized fluorene derivatives that are structurally similar to the cellular prion protein ligand N,N'-(methylenedi-4,1-phenylene)bis [2-(1-pyrrolidinyl)acetamide] (GN8) have been synthesized. These compounds show remarkable native fluorescence due to the fluorene ring. The substituents introduced at positions 2 and 7 of the fluorene moiety are sufficiently flexible to accommodate the beta-conformational folding that develops in amyloidogenic proteins. Changes in the native fluorescence of these fluorene derivatives provide evidence of transformations in the amyloidogenic aggregation processes of insulin. The increase observed in the fluorescence intensity of the sensors in the presence of native insulin or amyloid aggregates suggest their potential use as fluorescence probes for detecting abnormal conformations; therefore, the compounds can be proposed for use as "turn-on" fluorescence sensors. Protein-sensor dissociation constants are in the 5-10 µM range and an intermolecular charge transfer process between the protein and the sensors can be successfully exploited for the sensitive detection of abnormal insulin conformations. The values obtained for the Stern-Volmer quenching constant for compound 4 as a consequence of the sensor-protein interaction are comparable to those obtained for the reference compound GN8. Fluorene derivatives showed good performance in scavenging reactive oxygen species (ROS), and they show antioxidant capacity according to the FRAP and DPPH assays.


Subject(s)
Amyloid , Insulin , Amyloid/chemistry , Amyloidogenic Proteins , Fluorometry , Fluorenes/chemistry
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124094, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38503257

ABSTRACT

The most studied functional amyloid is the CsgA, major curli subunit protein, which is produced by numerous strains of Enterobacteriaceae. Although CsgA sequences are highly conserved, they exhibit species diversity, which reflects the specific evolutionary and functional adaptability of the major curli subunit. Herein, we performed bioinformatics analyses to uncover the differences in the amyloidogenic properties of the R4 fragments in Escherichia coli and Salmonella enterica and proposed four mutants for more detailed studies: M1, M2, M3, and M4. The mutated sequences were characterized by various experimental techniques, such as circular dichroism, ATR-FTIR, FT-Raman, thioflavin T, transmission electron microscopy and confocal microscopy. Additionally, molecular dynamics simulations were performed to determine the role of buffer ions in the aggregation process. Our results demonstrated that the aggregation kinetics, fibril morphology, and overall structure of the peptide were significantly affected by the positions of charged amino acids within the repeat sequences of CsgA. Notably, substituting glycine with lysine resulted in the formation of distinctive spherically packed globular aggregates. The differences in morphology observed are attributed to the influence of phosphate ions, which disrupt the local electrostatic interaction network of the polypeptide chains. This study provides knowledge on the preferential formation of amyloid fibrils based on charge states within the polypeptide chain.


Subject(s)
Escherichia coli Proteins , Escherichia coli Proteins/chemistry , Amino Acid Substitution , Amyloid/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Peptides/chemistry , Ions
15.
Food Chem ; 448: 139104, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38547711

ABSTRACT

Legume proteins can be induced to form amyloid-like fibrils upon heating at low pH, with the exact conditions greatly impacting the fibril characteristics. The protein extraction method may also impact the resulting fibrils, although this effect has not been carefully examined. Here, the fibrillization of lentil protein prepared using various extraction methods and the corresponding fibril morphology were characterized. It was found that an acidic, rather than alkaline, protein extraction method was better suited for producing homogeneous, long, and straight fibrils from lentil proteins. During alkaline extraction, co-extracted phenolic compounds bound proteins through covalent and non-covalent interactions, contributing to the formation of heterogeneous, curly, and tangled fibrils. Recombination of isolated phenolics and proteins (from acidic extracts) at alkaline pH resulted in a distinct morphology, implicating a role for polyphenol oxidase also in modifying proteins during alkaline extraction. These results help disentangle the complex factors affecting legume protein fibrillization.


Subject(s)
Lens Plant , Phenols , Plant Proteins , Lens Plant/chemistry , Phenols/chemistry , Phenols/isolation & purification , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Hydrogen-Ion Concentration , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Amyloid/chemistry , Chemical Fractionation/methods
16.
ACS Nano ; 18(12): 8798-8810, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38478911

ABSTRACT

Synthetic peptides that self-assemble into cross-ß fibrils are versatile building blocks for engineered biomaterials due to their modularity and biocompatibility, but their structural and morphological similarities to amyloid species have been a long-standing concern for their translation. Further, their polymorphs are difficult to characterize by using spectroscopic and imaging techniques that rely on ensemble averaging to achieve high resolution. Here, we utilize Nile red (NR), an amyloidophilic fluorogenic probe, and single-molecule orientation-localization microscopy (SMOLM) to characterize fibrils formed by the designed amphipathic enantiomers KFE8L and KFE8D and the pathological amyloid-beta peptide Aß42. Importantly, NR SMOLM reveals the helical (bilayer) ribbon structure of both KFE8 and Aß42 and quantifies the precise tilt of the fibrils' inner and outer backbones in relevant buffer conditions without the need for covalent labeling or sequence mutations. SMOLM also distinguishes polymorphic branched and curved morphologies of KFE8, whose backbones exhibit much more heterogeneity than those of typical straight fibrils. Thus, SMOLM is a powerful tool to interrogate the structural differences and polymorphism between engineered and pathological cross-ß-rich fibrils.


Subject(s)
Amyloid beta-Peptides , Microscopy , Protein Conformation, beta-Strand , Protein Structure, Secondary , Amyloid beta-Peptides/chemistry , Amyloid/chemistry
17.
Langmuir ; 40(12): 6094-6106, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38470353

ABSTRACT

Rational design of peptides has become a powerful tool to produce self-assembled nanostructures with the ability to catalyze different chemical reactions, paving the way to develop minimalistic enzyme-like nanomaterials. Catalytic amyloid-like assemblies have emerged among the most versatile and active, but they often require additional factors for activity. Elucidating how these factors influence the structure and activity is key for the design. Here, we showed that biologically relevant metal ions can guide and modulate the self-assembly of a small peptide into diverse amyloid architectures. The morphology and catalytic activity of the resulting fibrils were tuned by the specific metal ion decorating the surface, whereas X-ray structural analysis of the amyloids showed ion-dependent shape sizes. Molecular dynamics simulations showed that the metals can strongly affect the local conformational space, which can trigger major rearrangements of the fibrils. Our results demonstrate that the conformational landscape of catalytic amyloids is broad and tunable by external factors, which can be critical for future design strategies.


Subject(s)
Amyloid , Peptides , Amyloid/chemistry , Peptides/chemistry , Metals/chemistry , Amyloidogenic Proteins , Ions
18.
Biophys Chem ; 308: 107214, 2024 May.
Article in English | MEDLINE | ID: mdl-38428228

ABSTRACT

In the recent past, there has been an ever-increasing interest in the search for metal-based therapeutic drug candidates for protein misfolding disorders (PMDs) particularly neurodegenerative disorders such as Alzheimer's, Parkinson's, Prion's diseases, and amyotrophic lateral sclerosis. Also, different amyloidogenic variants of human lysozyme (HL) are involved in hereditary systemic amyloidosis. Metallo-therapeutic agents are extensively studied as antitumor agents, however, they are relatively unexplored for the treatment of non-neuropathic amyloidoses. In this work, inhibition potential of a novel ionic cobalt(II) therapeutic agent (CoTA) of the formulation [Co(phen)(H2O)4]+[glycinate]- is evaluated against HL fibrillation. Various biophysical techniques viz., dye-binding assays, dynamic light scattering (DLS), differential scanning calorimetry (DSC), electron microscopy, and molecular docking experiments validate the proposed mechanism of inhibition of HL fibrillation by CoTA. The experimental corroborative results of these studies reveal that CoTA can suppress and slow down HL fibrillation at physiological temperature and pH. DLS and 1-anilino-8-naphthalenesulfonate (ANS) assay show that reduced fibrillation in the presence of CoTA is marked by a significant decrease in the size and hydrophobicity of the aggregates. Fluorescence quenching and molecular docking results demonstrate that CoTA binds moderately to the aggregation-prone region of HL (Kb = 6.6 × 104 M-1), thereby, inhibiting HL fibrillation. In addition, far-UV CD and DSC show that binding of CoTA to HL does not cause any change in the stability of HL. More importantly, CoTA attenuates membrane damaging effects of HL aggregates against RBCs. This study identifies inorganic metal complexes as a therapeutic intervention for systemic amyloidosis.


Subject(s)
Amyloid , Amyloidosis , Humans , Amyloid/chemistry , Muramidase/chemistry , Molecular Docking Simulation , Amyloidosis/drug therapy , Amyloidosis/metabolism , Dynamic Light Scattering , Protein Aggregates
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124156, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38508075

ABSTRACT

Double PHD fingers 3 (DPF3) protein exists as two splicing variants, DPF3b and DPF3a, the involvement of which in human cancer and neurodegeneration is beginning to be increasingly recognised. Both isoforms have recently been identified as intrinsically disordered proteins able to undergo amyloid fibrillation. Upon their aggregation, DPF3 proteins exhibit an intrinsic fluorescence in the visible range, referred to as deep-blue autofluorescence (dbAF). Comprehension of such phenomenon remaining elusive, we investigated in the present study the influence of pH on the optical properties of DPF3b and DPF3a fibrils. By varying the excitation wavelength and the pH condition, the two isoforms were revealed to display several autofluorescence modes that were defined as violet, deep-blue, and blue-green according to their emission range. Complementarily, analysis of excitation spectra and red edge shift plots allowed to better decipher their photoselection mechanism and to highlight isoform-specific excitation-emission features. Furthermore, the observed violation to Kasha-Vavilov's rule was attributed to red edge excitation shift effects, which were impacted by pH-mediated H-bond disruption, leading to changes in intramolecular charge and proton transfer, or π-electrons delocalisation. Finally, emergence of different autofluorescence emitters was likely related to structurally distinct fibrillar assemblies between isoforms, as well as to discrepancies in the amino acid composition of their aggregation prone regions.


Subject(s)
Amino Acids , Amyloid , Humans , Amyloid/chemistry , Amino Acids/chemistry , Protein Isoforms/metabolism , Protons , Hydrogen-Ion Concentration
20.
Protein Sci ; 33(4): e4951, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38511533

ABSTRACT

The Parkinson's-associated protein α-synuclein (α-syn) can undergo liquid-liquid phase separation (LLPS), which typically leads to the formation of amyloid fibrils. The coincidence of LLPS and amyloid formation has complicated the identification of the molecular determinants unique to LLPS of α-syn. Moreover, the lack of strategies to selectively perturb LLPS makes it difficult to dissect the biological roles specific to α-syn LLPS, independent of fibrillation. Herein, using a combination of subtle missense mutations, we show that LLPS of α-syn is highly sensitive to its sequence complexity. In fact, we find that even a highly conservative mutation (V16I) that increases sequence complexity without perturbing physicochemical and structural properties, is sufficient to reduce LLPS by 75%; this effect can be reversed by an adjacent V-to-I mutation (V15I) that restores the original sequence complexity. A18T, a complexity-enhancing PD-associated mutation, was likewise found to reduce LLPS, implicating sequence complexity in α-syn pathogenicity. Furthermore, leveraging the differences in LLPS propensities among different α-syn variants, we demonstrate that fibrillation of α-syn does not necessarily correlate with its LLPS. In fact, we identify mutations that selectively perturb LLPS or fibrillation of α-syn, unlike previously studied mutations. The variants and design principles reported herein should therefore empower future studies to disentangle these two phenomena and distinguish their (patho)biological roles.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/chemistry , Parkinson Disease/metabolism , 60422 , Mutation, Missense , Mutation , Amyloid/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...